

Structural Isomers of Aryl-Substituted η^3 -Propargyl Complexes: η^2 -1-Metalla(methylene)cyclopropene and η^3 -Benzyl Complexes

Charles P. Casey,* Timothy M. Boller, Stefan Kraft, and Ilia A. Guzei

Contribution from the Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706

Received March 25, 2002. Revised Manuscript Received August 15, 2002

Abstract: Hydride abstraction from $C_5Me_5(CO)_2Re(\eta^2-PhC \equiv CCH_2Ph)$ (1) gave a 3:1 mixture of η^3 -propargyl complex $[C_5Me_5(CO)_2Re(\eta^3-PhCH-C\equiv CPh)][BF_4]$ (5) and η^2-1 -metalla(methylene)cyclopropene complex $[C_5Me_5(CO)_2Re(\eta^2-PhC-C=CHPh)][BF_4]$ (6). Observation of the η^2 -isomer requires 1,3-diaryl substitution and is favored by electron-donating substituents on the C₃-aryl ring. Interconversion of η^3 -propargyl and η^2 -1-metalla(methylene)cyclopropene complexes is very rapid and results in coalescence of Cp* ¹H NMR resonances at about −50 °C. Protonation of the alkynyl carbene complex C₅Me₅(CO)₂Re=C(Ph)C≡CPh (22) gave a third isomer, the η^3 -benzyl complex {C₅Me₅(CO)₂Re[$\eta^3(\alpha, 1, 2)$ -endo,syn-C₆H₅CH(C=CC₆H₅)]}-[BF₄] (23) along with small amounts of the isomeric complexes 5 and 6. While 5 and 6 are in rapid equilibrium, there is no equilibration of the η^3 -benzyl isomer **23** with **5** and **6**.

Introduction

 η^3 -Propargyl complexes are the triple bond analogues of synthetically important η^3 -allyl complexes. Werner prepared an *exo*-alkylidene- η^3 -propargyl complex in 1985,¹ and Krivykh prepared the first unsubstituted η^3 -propargyl complex in 1991 (Scheme 1).² The chemistry of η^3 -propargyl complexes has been extended to many early^{3,4} and late⁵ transition metals, and the use of these complexes in synthesis is expanding.^{6,7}

We developed efficient syntheses of η^3 -propargyl rhenium complexes, both by hydride abstraction from alkyne complexes⁸ and by protonation of propargyl alcohol complexes (a route pioneered by Krivykh⁹) (Scheme 2). Related η^3 -allyl complexes preferentially undergo nucleophilic addition at a terminal carbon.10 In contrast, nucleophiles normally attack the central

carbon of η^3 -propargyl complexes to give metallacyclobutenes. However in some cases, nucleophiles attack at either the C₁ terminus¹¹ to give alkyne complexes or at the C₃ terminus to give allene complexes.¹² The structures of η^3 -propargyl complexes suggest that an allenyl formulation is an important resonance contributor;⁶ the allenyl resonance contributor is useful in explaining the nucleophilic attack to give η^2 -allene complexes.

(11) Here, we define the η^3 -propargyl-disubstituted carbon as C_1 and the monosubstituted carbon as C3

^{*} Address correspondence to this author. E-mail: casey@chem.wisc.edu.

Gotzig, J.; Otto, H.; Werner, H. J. Organomet. Chem. 1985, 287, 247.
 Krivykh, V. V.; Taits, E. S.; Petrovskii, P. V.; Struchkov, Y. T.; Yanovskii, A. I. Mendeleev Commun. 1991, 103.

^{(3) (}a) Blosser, P. W.; Gallucci, J. C.; Wojcicki, A. J. Organomet. Chem. 2000, (b) Ogoshi, S.; Stryker, J. M. J. Am. Chem. Soc. 1998, 120, 3514.
 (c) Rodriguez, G.; Bazan, G. C. J. Am. Chem. Soc. 1997, 119, 343. (d) Blosser, P. W.; Gallucci, J. C.; Wojcicki, A. J. Am. Chem. Soc. 1993, 115, 2994.

⁽⁴⁾ Ihara, E.; Tanaka, M.; Yasuda, H.; Kanehisa, N.; Maruo, T.; Kai, Y. J. Organomet. Chem. 2000, 613, 26.

<sup>Organomet. Chem. 2000, 613, 26.
(5) (a) Blosser, P. W.; Calligaris, M.; Schimpff, D. G.; Wojcicki, A. Inorg. Chim. Acta 2001, 320, 110. (b) Ogoshi, S.; Nishida, T.; Fukunishi, Y.; Tsutsumi, K.; Kurosawa, H. J. Organomet. Chem. 2001, 620, 190. (c) Baize, M. W.; Blosser, P. W.; Plantevin, V.; Schimpff, D. G.; Gallucci, J. C.; Wojcicki, A. Organometallics 1996, 15, 164. (d) Blosser, P. W.; Schimpff, D. G.; Gallucci, J. C.; Wojcicki, A. Organometallics 1993, 12, 1993. (e) Huang, T.-M.; Chen, J.-T.; Lee, G. H.; Wang, Y. J. Am. Chem. Soc. 1993, 115, 1170. (f) Krivykh, V. V. Organomet. Chem. USSR 1992, 5, 113.
(6) (a) Wojcicki, A. Inorg. Chem. Commun. 2002, 5, 82. (b) Chen, J.-T. Coord. Chem. Rev. 1993, 190, 1143. (c) Kurosawa, H; Ogoshi, S. Bull. Chem. Soc. 1993, 71, 973 (d) Doherty S.; Corrigan J. F.; Carty, A. J. Sanpa</sup>

Soc. Jpn. 1998, 71, 973. (d) Doherty, S.; Corrigan, J. F.; Carty, A. J.; Sappa, E. Adv. Organomet. Chem. 1995, 37, 39. (e) Wojcicki, A. New J. Chem. 1994, 18, 61.

⁽⁷⁾ Radinov, R.; Hutchings, S. D. Tetrahedron Lett. 1999, 40, 8955.

Casey, C. P.; Selmeczy, A. D.; Nash, J. R.; Yi, C. S.; Powell, D. R.; Hayashi, R. K. J. Am. Chem. Soc. **1996**, 118, 6698.

⁽⁹⁾ Taits, E. S.; Petrovskii, P. V.; Krivykh, V. V. Russ. Chem. Bull. 1999, 48, 1774.

^{(10) (}a) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395. (b) (d) Host, D. H., Van Viance, D. E. Chan, Rev. **1989**, 89, 257. (c) Tsuji, J. *Tetrahedron* **1986**, 42, 4361. (d) Trost, B. M.; Verhoeven, T. R. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, U.K., 1982; Vol. 8, Chapter 57

In attempting to extend the range of η^3 -propargyl rhenium complexes, we initially experienced difficulty synthesizing arylsubstituted η^3 -propargyl complexes because of their thermal instability. Here, we report that 1,3-diaryl-substituted η^3 propargyl rhenium complexes can be synthesized at low temperature, but surprisingly, they are in equilibrium with a second isomer, an η^2 -1-metalla(methylene)cyclopropene complex. The unprecedented equilibration of η^3 -propargyl and η^2 -1-metalla(methylene)cyclopropene complexes is rapid and, therefore, needs to be considered in explaining the regioselectivity of nucleophilic additions to η^3 -propargyl complexes. A second potential route to diaryl-substituted η^3 -propargyl rhenium complexes involves protonation of alkynyl carbene complexes; however, this route led to the predominate formation of a third isomer, an η^3 -benzyl complex.

Results

Precursors of 1,3-Diaryl η^3 -**Propargyl Complexes.** When we initiated this work, there was only one reported group 6 or 7 aryl-substituted η^3 -propargyl complex.¹³ The two best methods for the synthesis of cationic η^3 -propargyl rhenium complexes are abstraction of a propargylic hydrogen from alkyne complexes and protonation of propargyl alcohol complexes. We have applied both to the synthesis of 1,3-diaryl η^3 -propargyl complexes. The precursor for hydride abstraction, C₅Me₅(CO)₂Re-(PhC=CCH₂Ph) (1), was prepared by reaction of the corresponding alkyne with C₅Me₅Re(CO)₂(THF) (2). The propargyl alcohol precursor, C₅Me₅(CO)₂Re(PhC=CCH(OH)Ph) (**3a** and **b**), was prepared as a 1.1:1 mixture of diastereomers by LiHBEt₃ reduction of the corresponding ketone complex, C₅Me₅(CO)₂-Re[PhC=CC(O)Ph] (**4**), which in turn was prepared from the alkynyl ketone and **2**.¹⁴

Hydride Abstraction from $C_5Me_5(CO)_2Re(PhC \equiv CCH_2Ph)$ (1) and Protonation of $C_5Me_5(CO)_2Re(PhC \equiv CCHOHPh)$ (3). Addition of $Ph_3C^+BF_4^-$ to a yellow solution of 1,3diphenylpropyne complex 1 at 0 °C in CD_2Cl_2 led to the immediate formation of a deep green solution. The ¹H NMR spectrum at -78 °C revealed a 3:1 ratio of isomers with Cp* resonances at δ 2.07 and 2.15. In a separate reaction, 85% HBF₄· Et₂O was added to a CD₂Cl₂ solution of **3a:3b** at -78 °C. The ¹H NMR spectrum of the resulting green solution taken at -78 °C showed a 3:1 ratio of the same two compounds.

The ¹H and ¹³C NMR spectra of the major isomer are consistent with its formulation as the η^3 -propargyl complex [C₅Me₅(CO)₂Re(η^3 -PhCH-C=CPh)][BF₄] (**5**) (Scheme 3). A singlet at δ 5.83 in the ¹H NMR spectrum was assigned to the proton on C₁. The low temperature ¹³C NMR spectrum was crucial in validating the η^3 -complexation, with the C₁, C₂, and C₃ resonances at δ 59.3, 67.5, and 85.2, respectively (Scheme 4). Related η^3 -propargyl rhenium complexes⁸ have similar characteristic chemical shifts: [C₅Me₅(CO)₂Re(η^3 -CH₂-C= CH)][BF₄] at δ 32.0, 64.2, 65.3; [C₅Me₅(CO)₂Re(η^3 -CH₂-C= CC(CH₃)₃)][PF₆] at δ 30.0, 60.5, 94.2; and [C₅Me₅(CO)₂Re(η^3 -CH₂-C=CH₃CH₃CH-C=CCH₃][PF₆] at δ 48.1, 59.8, 77.0. The ¹J_{CH}

coupling constant 165 Hz in **5** is consistent with the sp² hybridization of the C₁ carbon in other η^3 -propargyl complexes⁸ and is inidicative of the strong contribution from an η^3 -allenyl resonance form.⁶

The minor isomer displayed a high-frequency CH resonance at δ 10.1 and ¹³C NMR resonances of the C₁, C₂, and C₃ carbons at δ 141.4, 108.7, and 239.7, which were consistent with the η^2 -1-metalla(methylene)cyclopropene complex [C₅Me₅(CO)₂-Re(η^2 -PhC—C=CHPh)][BF₄] (**6**). In particular, the δ 239.7 shift of C₃ provides evidence for a η^2 -1-metallacyclopropene; very high-frequency chemical shifts are seen for the carbene-like carbon of related 1-metallacyclopropenes. In the less resonance stabilized 1-metallacylopropene [C₅Me₅(CO)₂Re(η^2 -PhCCHPh)]-[BF₄] (**7**), the carbene carbon appears at δ 280.3;¹⁵ in the neutral 1-metalla(methylene)cyclopropene C₅H₅[P(OCH₃)₃]₂Mo(*E*- η^2 -PhC—C=CHPh) (**8**), the carbene carbon appears at δ 253.5.

 η^{2} -1-Metalla(methylene)cyclopropene complexes are isomers of η^{3} -propargyl compounds in which only two carbons are bonded to the metal center. Several examples of group 6 η^{2} -1-metalla(methylene)cyclopropene transition metals are known. Green reported¹⁶ that deprotonation of the cationic η^{2} -alkyne complex {C₅H₅[P(OCH₃)₃]₂Mo(η^{2} -PhC=CCH₂Ph)][BF₄] (**9**) produced a 7:3 ratio of *E:Z* isomers of **8** (Scheme 5). The product mixture displayed fluxional ³¹P NMR behavior ($T_{c} =$ -74 °C), involving rotation of the η^{2} fragment which rapidly

^{(12) (}a) Casey, C. P.; Nash, J. R.; Yi, C. S.; Selmeczy, A. D.; Chung, S.; Powell, D. R.; Hayashi, R. K. J. Am. Chem. Soc. **1998**, 120, 722. (b) Cheng, Y.-C.; Chen, Y.-K.; Huang, T.-M.; Yu, C.-I.; Lee, G.-H.; Wang, Y.; Chen, J.-T. Organometallics **1998**, 17, 2953.

⁽¹³⁾ Carfagna, C.; Deeth, R. J.; Green, M.; Mahon, M. F.; McInnes, J. M.; Pellegrini, S.; Woolhouse, C. B. J. Chem. Soc., Dalton Trans. 1995, 3975.

⁽¹⁴⁾ This two step procedure was required, since the reaction of 2 with the propargyl alcohol gave intractable mixtures or very low yields.

⁽¹⁵⁾ Casey, C. P.; Brady, J. T.; Boller, T. M.; Weinhold, F.; Hayashi, R. K. J. Am. Chem. Soc. 1998, 120, 12500.

⁽¹⁶⁾ Feher, F. J.; Green, M.; Rodrigues, R. A. J. Chem. Soc., Chem. Commun. **1987**, 1206. Green refers to η^2 -1-metalla(methylene)cyclopropene as η^2 (3e⁻)-allenyl complexes.

interchanges the environments of the phosphite ligands in **8**. Templeton reported¹⁷ the deprotonation of a cationic η^2 -alkyne tungsten complex to form the neutral η^2 -1-metalla(methylene)-cyclopropene (dppe)(Me₂NCS₂)(CO)W[η^2 -(CH₃O)C-C=CHPh] (**10**), which equilibrated to a mixture of two isomers via rotation of the η^2 -ligand.

Variable temperature 360 MHz ¹H NMR spectroscopy of the mixture of **5** and **6** in CD₂Cl₂ showed rapid equilibration of these isomeric rhenium complexes. At 0 °C, a single sharp Cp* resonance was seen at δ 2.12. This fluxionality requires a rapid and reversible movement of C₁ in and out of the coordination sphere of the metal. At -100 °C,¹⁸ interconversion of **5** and **6** was slow enough that NOE transfer to the Cp* signal at δ 2.07 was observed upon selective irradiation of the methine proton of **5** at δ 5.83; this established that the methine hydrogen was in the *endo* position. At temperatures above -90 °C, interconversion of **5** and **6** was fast enough that irradiation of the methine resonance of **5** resulted in saturation transfer to the vinylic CH of η^2 -isomer **6** at δ 10.1.

The rapid interconversion of **5** and **6** makes it impossible to determine the kinetic ratio of isomers formed either from hydride abstraction or from protonation of the mixture of alcohol diastereomers.

Substituent Effects on the Equilibria between 1,3-Diaryl η^3 -Propargyl Complexes and η^2 -1-Metalla(methylene)cyclopropenes. In an effort to obtain equilibrium mixtures that favored either the η^3 -propargyl or η^2 -1-metalla(methylene)-cyclopropene, we investigated the effect of substituents on each of the aryl rings. Protonation of the 1:1 mixture of p-CF₃-C₆H₄-substituted alcohol complexes C₅Me₅(CO)₂Re[(p-CF₃-C₆H₄)C≡CCH(OH)Ph] (**11a** and **b**) with 85% HBF₄•Et₂O in CD₂Cl₂ at −78 °C gave an ~50:1 ratio of η^3 -propargyl (**12**): η^2 -1-metalla(methylene)cyclopropene (**13**) complexes. The key features of the ¹H and ¹³C NMR spectra of [C₅Me₅(CO)₂Re-(η^3 -PhCH-C≡CC₆H₄-p-CF₃)][BF₄] (**12**) are the signature CH signal at δ 5.98 and resonances for C₁, C₂, and C₃ at δ 60.1 (¹ $J_{CH} = 167$ Hz), 70.2, and 83.6.

Evidence for steric crowding around the C₁ center of η^3 -propargyl complexes came from low temperature ¹H NMR studies of **12**. The ¹H NMR spectrum of **12** displayed five different phenyl CH resonances at δ 6.59, 7.21, 7.29, 7.49, and 7.79, indicating asymmetry of the phenyl group due to restricted rotation about the C₁-C_{ipso} bond. At -80 °C, selective irradiation of the η^3 -CHPh resonance at δ 5.98 produced an NOE enhancement at the Cp* signal at δ 2.08, indicating the *endo*-orientation of the irradiated hydrogen. The ¹³C NMR spectrum

Table 1. Electronic Effects²⁹ on η^3 -Propargyl/ η^2 -1-Metalla(methylene)cyclopropene Equilibrium Ratio, Measured at -75 °C in CD₂Cl₂

η^3/η^2	C ₁ -ring	C ₃ -ring	η^3	η^2
5:6	Н	Н	75	25
12:13	Н	$p-CF_3$	98	2
15:16	p-CH ₃	$p-CH_3$	9	91
18:19	p-CH ₃	H	50	50
20:21	m,m-CF ₃	Н	50	50

of **12** exhibited five inequivalent phenyl CH resonances at δ 122.87, 128.97, 129.19, 129.32, and 129.58.

Protonation of the 1:1 mixture of di-*p*-tolyl-substituted alcohol complexes C₅Me₅(CO)₂Re[(*p*-CH₃C₆H₄)¹³C \equiv ¹³C¹³CHOH(C₆H₄-*p*-CH₃)] (**14a** and **b**) with 85% HBF₄·Et₂O in CD₂Cl₂ at -78 °C gave an ~1:10 ratio of η^3 -propargyl complex (**15**): η^2 -1-metalla(methylene)cyclopropene (**16**). The use of triple ¹³C-labeled material firmly established the spectral assignments of the η^2 -1-metalla(methylene)cyclopropene [C₅Me₅(CO)₂Re[η^2 -(*p*-CH₃-C₆H₄)¹³C-¹³C=¹³CH(C₆H₄-*p*-CH₃)][BF₄] (**16**). At -90 °C, the key features of the ¹H and ¹³C NMR spectra of **16** are a predominant Cp* resonance at δ 2.09 and a high frequency doublet for the CH at δ 9.99 (¹*J*_{CH} = 159 Hz). The ¹³C labels provide excellent evidence for the η^2 -1-metalla(methylene)-cyclopropene bonding motif, with resonances for C₁, C₂, and C₃ at δ 141.8 (d, ¹*J*_{CC} = 85 Hz), 107.1 (dd, ¹*J*_{CC} = 85, 61 Hz), and 233.8 (d, ¹*J*_{CC} = 62 Hz).

Because of the use of triple ¹³C-labeled material, the small amount of propargyl isomer $[C_5Me_5(CO)_2Re[\eta^3-(p-CH_3-C_6H_4)^{13}CH^{-13}C\equiv^{13}C(C_6H_4-p-CH_3)][BF_4]$ (15) was also discernible in the ¹³C NMR spectrum; resonances for C₁, C₂, and C₃ were observed at δ 59.8 (dd, ¹ J_{CC} = 65 Hz, ² J_{CC} = 8 Hz), 66.4 (dd, ¹ J_{CC} = 110, 65 Hz), and 85.4 (dd, ¹ J_{CC} = 110 Hz, ² J_{CC} = 8 Hz), respectively.

The equilibrium ratio of the η^3 and η^2 products was strongly dependent on the nature of the electron-donating or -withdrawing nature of substituents on the aromatic rings (Table 1).

Activation Barrier for Interconversion of η^3 -Propargyl and η^2 -1-Metalla(methylene)cyclopropene Complexes. For a quantitative ¹³C NMR investigation of the unique fluxional process that interconverts η^3 -propargyl and η^2 -1-metalla(methylene)cyclopropene complexes, we chose to study a system with a 1:1 ratio of isomers and we used ¹³C labeling at C₁ to enhance sensitivity. Protonation of $C_5Me_5(CO)_2Re[\eta^2-PhC=$ $C^{13}CH(OH)(C_6H_4-p-CH_3)$] (17a and b) with HBF₄·Et₂O at -78 °C gave η^3 -propargyl complex {C₅Me₅(CO)₂Re[η^3 -(p- $CH_3 - C_6H_4)^{13}CH - C = CPh] [BF_4]$ (18) and η^2 -1-metalla-(methylene)cyclopropene complex $[C_5Me_5(CO)_2Re(\eta^2-PhC C=^{13}CH(C_6H_4-p-CH_3)$ [BF₄] (19). The temperature dependence of the ¹³C label resonances was measured over the range from -75 °C to -30 °C. Line broadening simulation of the ¹³C spectra allowed measurement of the rates of interconversion of isomers. An Eyring plot gave activation parameters for the isomerization process: $\Delta H^{\ddagger} = 10.8 \text{ kcal mol}^{-1}, \Delta S^{\ddagger} = -0.5$ eu, with $\Delta G^{\ddagger} = 10.3 \text{ kcal mol}^{-1} \text{ at } -45 \text{ }^{\circ}\text{C}.$

Protonation of Alkynyl Carbene Complexes as a Route to η^3 -Propargyl Complexes. Recently, we reported the synthesis of rhenium alkynyl carbene complexes and their [1,3] metal shift and dimerization reactions.¹⁹ Protonation at either the carbene carbon²⁰ or the remote alkynyl carbon of these

⁽¹⁷⁾ Gamble, A. S.; Birdwhistell, K. R.; Templeton, J. L. J. Am. Chem. Soc. 1990, 112, 1818.

⁽¹⁸⁾ The addition of 20 vol % polar solvent mixture CDCl₂F/CDClF₂ (2:1) [Siegel, J. S.; Anet, F. A. L. J. Org. Chem. **1988**, 53, 2629] to a CD₂Cl₂ solution of **13/14** allowed NOESY1D gradient experiments at low temperature. A negative NOE peak was observed in the Cp* resonance, -26% in magnitude compared to the inverted CH signal.

complexes offered a potential route to diaryl-substituted η^3 propargyl complexes. Addition of HBF₄·Et₂O to a black CD₂Cl₂ solution of alkynyl carbene complex C₅Me₅(CO)₂Re=C(Ph)C= CPh (**22**) at -78 °C immediately produced a red solution. ¹H NMR spectroscopy at -78 °C showed the formation of a single major product (different from either **5** or **6**) containing a singlet at δ 2.66, a doublet at δ 4.76, and an asymmetric aromatic region. The ¹³C NMR spectrum revealed an intact acetylene unit, signifying the absence of alkyne coordination to rhenium. On the basis of these spectral features, this third isomer of η^3 propargyl was assigned as the η^3 -benzyl complex {C₅Me₅(CO)₂-Re[$\eta^3(\alpha, 1, 2)$ -endo,syn-C₆H₅CH(C=CC₆H₅)]}[BF₄] (**23**) (Scheme 6).

To test our proposed η^3 -benzyl structure for 23, we prepared a deuterium-labeled alkynyl carbene complex $C_5Me_5(CO)_2Re=$ $C(Ph)C \equiv CC_6D_5$ (22-d₅A), to allow unobscured viewing of the NMR resonances of the η^3 -benzyl functionality in 23-d₅A. Addition of HBF₄·Et₂O to a CD₂Cl₂ solution of **22-d₅A** at -78 °C and warming to 0 °C gave complex 23-d₅A in 90% yield by ¹H NMR spectroscopy. The η^3 -benzyl unit gave rise to aromatic resonances at δ 4.76, 7.33 (2H), 7.65, and 7.83. Upon cooling 23-d₅A to -75 °C, ¹H NMR signals for 10% of a 3:1 mixture of 5-d₅/6-d₅ decoalesced and were readily detected. While 5-d₅ and 6-d₅ are in rapid equilibrium, no equilibration with η^3 -benzyl isomer 23-d₅A was seen, even upon warming to 25 °C. This labeling experiment also established that η^3 benzyl complex 23-d₅A is predominantly formed by protonation of the carbon of 22-d₅A and coordination of the C₆H₅ ring.

Single crystals of a different isotopomer **23-d**₅**B** were obtained by slow diffusion of pentane into a CD₂Cl₂ solution of {C₅Me₅-(CO)₂Re[$\eta^3(\alpha, 1, 2)$ -*endo*,*syn*-C₆D₅CH(C=CC₆H₅)]}[BF₄] (**23-d**₅**B**), obtained from low temperature HBF₄ addition to C₅Me₅(CO)₂Re=C(C₆D₅)C=CC₆H₅ (**22-d**₅**B**). While the structure was highly disordered, the trihapto coordination of the benzyl of **23-d**₅**B** was confirmed with the three carbons within bonding distance to rhenium (Figure 1).²¹

Monoaryl-Substituted η^3 -**Propargyl Complexes.** The observation of the equilibrium between diaryl-substituted η^3 -propargyl complexes and the corresponding η^2 -1-metalla-(methylene)cyclopropene is unusual and had not been observed

Figure 1. X-ray crystal structure of η^3 -benzyl complex {C₅Me₅(CO)₂Re-[$\eta^3(\alpha, 1, 2)$ -endo,syn-C₆D₅CH(C=CC₆H₅)]}[BF₄] (**23-d₅B**). The molecular structure is drawn with 30% thermal probability ellipsoids, with hydrogens omitted for clarity.

Scheme 7

for alkyl-substituted η^3 -propargyl complexes. This prompted us to investigate the synthesis of both 1-phenyl- and 3-phenylsubstituted η^3 -propargyl complexes. Interestingly, earlier attempts to prepare such aryl-substituted complexes had been unsuccessful. A wide variety of simple alkyl and aryl groups at the C₃ carbon of the η^3 -propargyl ligand are known for early and late transition metals. However, examples of aromatic substitution in group 6 and 7 metal complexes are limited.

Hydride abstraction from C₅Me₅(CO)₂Re(η^2 -CH₃C=CC₆H₅) (24) with Ph₃C⁺BAr'₄⁻ (BAr'₄=B[C₆H₃(3,5-CF₃)]₄) in CD₂Cl₂ at 0 °C cleanly gave the desired 3-phenyl-substituted η^3 propargyl complex [C₅Me₅(CO)₂Re(η^3 -CH₂C=CC₆H₅)][BAr'₄] (25-BAr'₄) (Scheme 7). Doublets were observed at δ 3.53 and δ 4.65 in the ¹H NMR spectrum with the characteristic geminal coupling 10.4 Hz, a signature of the coordinated CH₂ group. The 3-phenyl η^3 -propargyl complex [C₅Me₅(CO)₂Re(η^3 -CH₂C= CC₆H₅)][BF₄] (25-BF₄) was also generated by protonation of the η^2 -propargyl alcohol complex C₅Me₅(CO)₂Re(η^2 -HOCH₂C= CC₆H₅) (26) with 85% HBF₄·Et₂O at -78 °C in CH₂Cl₂. 25-BF₄ was isolated in 53% yield but decomposed over hours in CH₂Cl₂ at 0 °C and rapidly as a solid at room temperature. We do not understand why phenyl-substituted η^3 -propargyl complexes are less stable than their alkyl-substituted analogues.

No evidence for the η^2 -isomer of **25** was observed: the ¹H NMR spectrum contained a single Cp* resonance and no CH₂=C resonances between δ 5.5–6.5,²² and the ¹³C NMR spectrum exhibited no Re=C resonance.

Next, we set out to prepare the first example of a C₁-phenylsubstituted η^3 -propargyl complex by hydride abstraction from

^{(19) (}a) Casey, C. P.; Kraft, S.; Powell, D. R. J. Am. Chem. Soc. 2002, 124, 2584-2594. (b) Casey, C. P.; Kraft, S.; Powell, D. R. Organometallics 2001, 20, 2651. (c) Casey, C. P.; Kraft, S.; Powell, D. R. J. Am. Chem. Soc. 2000, 122, 3771. (d) Casey, C. P.; Kraft, S.; Kavana, M. Organometallics 2001, 20, 3795.

⁽²⁰⁾ For examples of metal carbene protonations, see: (a) Casey, C. P.;
(2) For examples of metal carbene protonations, see: (a) Casey, C. P.;
(2) Czerwinski, C. J.; Powell, D. R.; Hayashi, R. K. J. Am. Chem. Soc. 1997, 119, 5750. (b) Casey, C. P.; Vosejpka, P. C.; Askham, F. R. J. Am. Chem. Soc. 1980, 112, 3713. (c) Klein, D. P.; Bergman, R. G. J. Am. Chem. Soc. 1980, 111, 3079. (d) Hill, A. F.; Roper, W. R.; Waters, J. M.; Wright, A. H. J. Am. Chem. Soc. 1983, 105, 5939. (e) Clark, G. R.; Roper, W. R.;
Wright, A. H. J. Organomet. Chem. 1984, 273, C17.

⁽²¹⁾ Highly idealized phenyl and Cp* units were required for refinement. See Supporting Information for bond distance tables.

⁽²²⁾ In a related allene complex, the terminal CH₂= unit was observed at δ 5.48 and 6.52, with ²J ≈ 0 Hz: Casey, C. P.; Brady, J. T. Organometallics 1998, 17, 4620.

the 1-phenyl-2-butyne complex $C_5Me_5(CO)_2Re(\eta^2-C_6H_5CH_2C \equiv$ CCH₃) (27). While hydride abstraction from a rhenium 2-pentyne complex showed only a 2.5:1 preference for abstraction from the Et group over the Me group,⁸ we anticipated greater selectivity favoring abstraction of a benzylic hydride from a 1-phenyl-2-butyne rhenium complex. Addition of Ph₃C⁺BF₄⁻ to a CD_2Cl_2 solution of 27 at -78 °C led to regioselective abstraction of a secondary benzylic hydride and formation of a single new species, the 1-phenyl-substituted η^3 -propargyl complex $[C_5Me_5(CO)_2Re(\eta^3-PhCH-C=CCH_3)][BF_4]$ (28) (Scheme 7). The ¹H NMR spectrum at -10 °C showed a doublet at δ 2.79 and a quartet at δ 5.38, with a long range ⁵*J*-coupling of 2.2 Hz, consistent with a 1-phenyl-substituted η^3 -propargyl complex. The ¹³C NMR spectrum with resonances for C_1 , C_2 , and C_3 at δ 55.6, 57.6, and 79.5 provided further support for the formulation of 28. Decomposition of 28 occurred above 0 °C. η^3 -Propargyl complexes bearing an aromatic group at C₁ were unknown prior to the work reported here.

No abstraction of a methyl hydrogen from **27** to produce an isomeric η^3 -propargyl complex was observed, consistent with the expected higher reactivity of benzylic hydrogens. No evidence for formation of the η^2 -isomer was observed by ¹H or ¹³C NMR spectroscopy at -80 °C.

Discussion

Numerous η^3 -propargyl complexes have been reported, but the isomeric η^2 -1-metalla(methylene)cyclopropene has never been seen in equilibrium with an η^3 -propargyl complex. η^2 -1-Metalla(methylene)cyclopropene complexes are limited to Mo or W compounds derived from deprotonation of η^2 -alkyne precursors, ^{16,17,23,24} but the isomeric η^3 -propargyl complexes are not seen in these systems.

In the course of investigating phenyl-substituted η^3 -propargyl complexes, we discovered that 1,3-diaryl-substituted η^3 -propargyl complexes such as $[C_5Me_5(CO)_2Re(\eta^3-PhCH-C\equiv CPh)][BF_4]$ (5) were in equilibrium with the corresponding η^2 -1-metalla(methylene)cyclopropene complex $[C_5Me_5(CO)_2Re(\eta^2-PhC-C=CHPh)][BF_4]$ (6). Aryl substitutions at both C₁ and C₃ are apparently required for observation of an η^2 -1-metalla(methylene)cyclopropene, since phenyl substitution at only the C₁ or C₃ position gave only the η^3 -propargyl isomer. What steric or electronic factors might determine whether an η^2 -1-metalla(methylene)cyclopropene will be stable enough to be observed?

Electronic factors affect the equilibrium between η^3 - and η^2 isomers. Replacement of the phenyl group at C₃ of **6** by an electron-withdrawing *p*-CF₃-C₆H₄ group in **13** led to a large decrease in the percentage of η^2 -isomer from 25% for **6** to <2% for **13**. Replacement of the phenyl group at C₁ of **6** by an electron-donating tolyl group in **19** led to a moderate increase in the percentage of η^2 -isomer from 25% for **6** to 50% for **19**. Addition of a second tolyl group to C₃ in **19** led to a still larger increase in the amount of η^2 -isomer from 50% for **19** to 90% for **16**. Thus, electron donors at C₃ greatly favor the η^2 -isomer, and electron donors at C₁ favor the η^2 -isomer to a smaller extent.

We attribute this electronic preference for formation of the η^2 -isomer to stabilization of the electrophilic carbene center at C₃ of the η^2 -isomer by an electron-donating aromatic ring. The

C₃ site of the η^2 -isomer is the most electrophilic center in either the η^3 - or the η^2 -isomer, and stabilization by electron donors is crucial in perturbing the equilibrium. The second most electrophilic carbon is C₁ of the η^2 -isomer, which is in conjugation with the carbene-like C₃ position, with electron donors at C₁ favoring the η^2 -isomer to a lesser extent than donors at the C₃ site.

We have observed similar stabilization of the electron deficient carbene center of rhenium diphenyl 1-metallacyclopropene complexes.¹⁵ Isomeric rhenium diaryl 1-metallacyclopropene complexes equilibrate rapidly by a [1,2]-hydrogen shift. Protonation of the asymmetric η^2 -alkyne complex C₅Me₅(CO)₂-Re(η^2 -PhC=CTol) (**29**) with HBF₄•Et₂O at -78 °C followed by warming to -40 °C gave a kinetic 2.3:1 ratio of the two isomeric 1-metallacyclopropene complexes [C₅Me₅(CO)₂Re(η^2 -PhCHCTol)][BF₄] (**30**)/[C₅Me₅(CO)₂Re(η^2 -PhCCHTol)][BF₄] (**31**). Upon warming to 25 °C, equilibration occurred to give a 4.5:1 mixture of **30/31**. The favored isomer at equilibrium has the more electron-donating tolyl group at the carbene center (Scheme 8).

Steric effects at C₁ also play a role in determining the equilibrium between η^3 - and η^2 -isomers. Two major structural changes occur in going from an η^3 - to an η^2 -isomer (Scheme 9). First, the sterically bulky C₁HPh unit moves away from the sterically large C₅Me₅(CO)₂Re group in going to the η^2 -isomer. Second, the C₁HR plane in the η^3 -isomer, which is roughly orthogonal to the Re-C₁-C₂-C₃ plane (R₁-C₁-C₂-C₃ torsion angle 90°-100°), must rotate about 90° to become nearly coplanar in the η^2 -isomer. In the η^3 -isomer, C₁ is bonded to Re and there is an acute Re-C₂-C₁ angle (65-75° in X-ray structures^{2,3a,8,16,25}). But, in the η^2 -isomer, C₁ is not bonded to Re and there is an obtuse Re-C₂-C₁ angle (135-148° in related η^2 -allene X-ray structures²⁶).

Steric crowding at C₁ of η^3 -propargyl complexes has been shown to lead to kinetic (and probably thermodynamic) destabilization.⁸ For example, protonation of C₅Me₅(CO)₂Re-

⁽²³⁾ Collins, M. A.; Feng, S. G.; White, P. A.; Templeton, J. L. J. Am. Chem. Soc. 1992, 114, 3771.

⁽²⁴⁾ Frohnapfel, D. S.; Enriquez, A. E.; Templeton, J. L. Organometallics 2000, 19, 221.

^{(25) (}a) Stang, P. J.; Crittel, C. M.; Arif, A. M. Organometallics 1993, 12, 4799.
(b) Wakatsuki, Y.; Yamazaki, Y.; Maruyama, H.; Shimizu, I. Chem. Commun. 1991, 261.

<sup>Commun. 1991, 261.
(26) (a) Lentz, D.; Willemsen, S. Organometallics 1999, 18, 3962. (b) Werner,</sup> H.; Lass, R. W.; Gevert, O.; Wolf, J. Organometallics 1997, 16, 4077. (c) Esteruelas, M. A.; Lahoz, F. J.; Martin, M.; Onate, E.; Oro, L. A. Organometallics 1997, 16, 4572. (d) Lee, L.; Wu, I.-Y.; Lin, Y.-C.; Lee, G.-H.; Wang, Y. Organometallics 1994, 13, 2521. (e) Pu, J.; Peng, T.-S.; Arif, A. M.; Gladysz, J. A. Organometallics 1992, 11, 3232. (f) Franck-Neumann, M.; Neff, D.; Nouali, H.; Martina, D.; de Cian, A. Synlett 1994, 657. (g) Feher, F. J.; Gergens, D. D.; Ziller, J. W. Organometallics 1993, 12, 2810.

 $(\eta^2$ -CH₃C=CCH(CH₃)OH) (**32**) at -78 °C produced a 4:1 mixture of the anti/syn η^3 -propargyl complexes [C₅Me₅(CO)₂-Re(η^3 -CH₃C=CCHCH₃)][BF₄] (**33**-anti and **33**-syn), which differ in the orientation of the methyl group either away or toward the Cp* ligand. Upon warming the solution above -20 °C, the less stable **33**-syn isomer decomposed, while the more stable **33**-anti isomer remained and was isolated at room temperature. Another case of steric destabilization was observed for the bulky gem-dimethyl η^3 -propargyl complex [C₅Me₅(CO)₂-Re(η^3 -HC=CC(CH₃)₂][BF₄] (**34**), which decomposed above -20 °C, presumably because of the unfavorable steric interaction of the *endo*-methyl group with the Cp* fragment.

Evidence for steric crowding at the C₁HAr site in the 1,3diaryl η^3 -propargyl complexes came from low temperature ¹H NMR spectroscopy of the *p*-CF₃-C₆H₄-substituted η^3 -propargyl complex **12**, which showed five different CH phenyl resonances for the phenyl group at C₁. This asymmetry of the phenyl group at C₁ is due to restricted rotation about the C₁-C_{*ipso*} bond. We do not fully understand the origin of the steric interactions responsible for hindered phenyl rotation, but the hindered rotation strongly suggests a sterically congested site.

In summary, the combination of steric destabilization of the η^3 -isomer by the large C₁HPh unit and electronic stabilization of the η^2 -isomer by electron-donating aryl units at the C₃ position (and also at the C₁ position) is responsible for the observation of η^2 -1-metalla(methylene)cyclopropenes only in the presence of aryl substitution at both C₁ and C₃.

Not only is the observation of an equilibrium between η^3 propargyl and η^2 -1-metalla(methylene)cyclopropene isomers unprecedented, the rapid nature of this fluxional process, which involves simple, reversible π -bond complexation, is striking. Other $\eta^2 - \eta^3$ processes (such as allylic C–H activation of iron– alkene complexes to give η^3 -allyl iron hydride intermediates proposed for iron carbonyl catalyzed alkene isomerization²⁷) are known but involve more complicated mechanisms than the simple, reversible π -bond complexation observed here. In the deprotonation of a molybdenum bis(alkyne) complex, Green proposed formation of an η^2 -1-metalla(methylene)cyclopropene complex as an unobserved intermediate, which rearranges to an η^1 -allenyl intermediate, followed by formation of a more stable η^3 -propargyl complex.¹³ In light of the observations reported here, a simple direct $\eta^2 - \eta^3$ isomerization should be considered as an alternative to Green's proposed $\eta^2 - \eta^1 - \eta^3$ process.

Attempted entry into mixtures of $\eta^2 - \eta^3$ isomers via protonation of alkynyl carbene complex **22** instead produced predominantly a third isomer, an η^3 -benzyl complex **23**. The η^3 -benzyl complex results from protonation at the carbene carbon C₁ and complexation of the aryl ring. A 16e intermediate that partitions between aryl complexation to yield η^3 -benzyl complex **23** and alkyne coordination to yield η^3 -propargyl complex **5** can explain the formation of two types of products. A possible variation on the mechanism involves initial protonation at rhenium to give a metal hydride, followed by hydride

migration to the carbene carbon to give the 16e intermediate; however, no rhenium hydride species was observed by low temperature ¹H NMR spectroscopy. The small percentage of $\eta^2 - \eta^3$ isomers in the mixture could be formed by a combination of remote protonation at the C₃ carbon to produce the η^2 -allenyl isomer and C₁ carbene protonation, followed by alkyne complexation to yield the η^3 -propargyl complex, with immediate equilibration for both pathways. The high selectivity of η^3 benzyl formation is attributed to a kinetic preference for protonation at the carbene center and a kinetic preference for complexation of the aryl ring versus complexation of the alkyne.

The rapid nature of the $\eta^3 - \eta^2$ equilibration needs to be considered in interpreting the regioselectivity of nucleophilic additions to η^3 -propargyl systems (Scheme 10). Previously, we had observed kinetic additions of phosphines and other nucleophiles to the center carbon of η^3 -propargyl rhenium complexes to give metallacyclobutenes.^{12a} At higher temperature, rearrangements to η^2 -allene or η^2 -alkyne products were observed. These rearrangements are the result of reversible additions of phosphines and amines to the central carbon, followed by irreversible terminal addition to give η^2 -allene or η^2 -alkyne products. The question now arises as to whether the η^2 -allene or η^2 -alkyne products might arise from nucleophilic attack on the η^2 -isomer rather than just the η^3 -isomer, as previously assumed.

Experimental Section

C₅**Me**₅**(CO)**₂**Re**(η^2 -**Ph**C**≡CCH**₂**Ph**) (1). A solution of C₅Me₅(CO)₂-Re(THF) (2)^{8,28} (1.0 mmol) and 1,3-diphenylpropyne (1.0 g, 5.2 mmol) in 5 mL of THF was stirred overnight. Volatile material was evaporated under vacuum, and the solid residue was chromatographed (silica gel, 5:1 hexanes/Et₂O) to give 1 as a yellow powder (236 mg, 42%). ¹H NMR (CDCl₃, 300 MHz) δ 1.93 (s, C₅Me₅), 4.08 (d, *J* = 17.2 Hz, C*H*H), 4.33 (d, *J* = 17.2 Hz, CH*H*), 7.1−7.4 (m, aromatic). ¹³C{¹H} NMR (CD₂Cl₂, 90 MHz) δ 10.75 (C₅Me₅), 35.48 (CH₂), 80.43 (C≡C), 89.83 (C≡C), 100.24 (C₅Me₅), 126.49 (aromatic CH_{para}), 126.77 (aromatic CH_{para}), 128.21, 128.79, 131.56 (aromatic CH_{metulortho}), 129.97, 140.42 (aromatic C_{ipso}), 208.82 (CO), 209.77 (CO). By ¹H NMR spectroscopy, the sample was >95% pure in the Cp* region δ 1.9− 2.2 and >98% pure in the aromatic region δ 7.0−7.5. IR (THF) 1950.22, 1868.04. MS (ESI) Calcd (obsd) for C₂₇H₂₇O₂Re•Na⁺ 591.1439 (591.1420).

^{(27) (}a) Long, G. T.; Weitz, E. J. Am. Chem. Soc. 2000, 122, 1431. (b) Galindo, A.; Mealli, C.; Cuyás, J.; Miguel, D.; Riera, V.; Pérez-Martinez, J. A.; Bois, C.; Jeannin, Y. Organometallics 1996, 15, 2735. (c) Chang, S.; White, P. S.; Brookhart, M. Organometallics 1993, 12, 3636. (d) Barnhart, T. M.; Fenske, R. F.; McMahon, R. J. Inorg. Chem. 1992, 31, 2679. (e) Barnhart, T. M.; McMahon, R. J. Am. Chem. Soc. 1992, 14, 5434. (f) Krivykh, V. V.; Gusev, O. V.; Rybinskaya, M. I. J. Organomet. Chem. 1899, 362, 351. (g) Casey, C. P.; Cyr, C. R. J. Am. Chem. Soc. 1973, 95, 2248.

⁽²⁸⁾ Casey, C. P.; Sakaba, H.; Hazin, P. N.; Powell, D. R. J. Am. Chem. Soc. 1991, 113, 8165.

^{(29) (}a) Carrol, F. A. Perspectives on Structure and Mechanism in Organic Chemistry; Brooks/Cole Publishing Co.: Pacific Grove, CA, 1998; sec.
6.6. (b) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165. (c) McDaniel, D. H.; Brown, H. C. J. Org. Chem. 1958, 23, 420.

[C₅Me₅(CO)₂Re(η^3 -PhCHC≡CPh)][BF₄] (5) and [C₅Me₅(CO)₂Re-(η^2 -PhCC=CHPh)][BF₄] (6). Ph₃CBF₄ (21 mg, 0.064 mmol) was added to a solution of 1 (33 mg, 0.058 mmol) in CD₂Cl₂ at 0 °C to give a 3:1 mixture of 5/6, which was characterized spectroscopically.

For $[C_5Me_5(CO)_2Re(\eta^3-PhCH-C=CPh)][BF_4]$ (5): ¹H NMR (CD₂Cl₂, 360 MHz, -75 °C) δ 2.07 (s, C₅Me₅), 5.83 (s, CH-C=C), 6.57-8.12 (m, aromatic, obscured by Ph₃CH). ¹³C{¹H} NMR (CD₂Cl₂, 90 MHz, -75 °C) δ 10.13 (C₅Me₅), 59.28 (CHC=C), 67.46 (CHC=C), 85.24 (CHC=C), 105.79 (C₅Me₅), 118-132 (aromatic), 193.52 (CO), 199.36 (CO).

For $[C_5Me_5(CO)_2Re(\eta^2-PhCC=CHPh)][BF_4]$ (6): ¹H NMR (CD₂Cl₂. 360 MHz, -75 °C) δ 2.15 (s, C₅Me₅), 6.56-8.21 (aromatic), 10.14 (s, CH=CC). ¹³C{¹H} NMR (CD₂Cl₂, 90 MHz, -75 °C) δ 10.29 (C₅Me₅), 104.38 (C₅Me₅), 108.68 (CH=CC), 118-132 (aromatic), 141.37 (CH=CC), 191.64 (CO), 195.96 (CO), 239.72 (Re=C).

C₅**Me**₅(**CO**)₂**Re**(η^2 -**Tol**¹³**CH**(**OH**)¹³**C**≡¹³**CTol**) (14). Addition of LiHBEt₃ (0.5 mL, 1.0 M in THF, 0.5 mmol) to a red solution of C₅Me₅(CO)₂Re(η^2 -Tol¹³C(O)¹³C≡¹³CTol) (37) (60 mg, 0.098 mmol) in 10 mL of THF at 0 °C gave a yellow solution. After the solution was stirred for 30 min at room temperature, 1.0 mL of EtOH/H₂O (3: 1) was added and volatile material was evaporated under vacuum. The residual solid was dissolved in diethyl ether and chromatographed (silica gel, 4:1 hexanes/Et₂O) to give a 1.1:1mixture of two diastereomers of 14 (48 mg, 80%) as a yellow oil. By ¹H NMR, the sample was >98% pure in the Cp* region δ 1.9−2.2.

Major diastereomer: ¹H NMR (CD₂Cl₂ 300 MHz) δ 1.91 (s, C₅Me₅), 2.31 (s, CH₃), 2.34 (s, CH₃), 6.08 (dq, ¹*J*_{CH} = 147.3 Hz, ⁴*J*_{HH} = ²*J*_{CH} = 4.7 Hz, CHOH), 6.9–7.4 (aromatic); ¹³C{¹H} NMR (CD₂Cl₂, 90 MHz) δ 10.22 (C₅Me₅), 72.63 (dd, ¹*J*_{CC} = 60.2 Hz, ²*J*_{CC} = 3.3 Hz, ¹³CH¹³C≡¹³CTol), 84.9 (dd, ¹*J*_{CC} = 99.8 Hz, ²*J*_{CC} = 3.5 Hz, ¹³CH¹³C≡¹³CTol), 93.3 (dd, ¹*J*_{CC} = 100.6 Hz, ¹*J*_{CC} = 60.1 Hz, ¹³CH¹³C≡¹³CTol).

Minor diastereomer: ¹H NMR (CD₂Cl₂ 300 MHz) δ 1.98 (s, C₅Me₅), 2.34 (s, CH₃), 2.39 (s, CH₃), 5.80 (dm, ¹*J*_{CH} = 147.3 Hz, ⁴*J*_{HH} = ²*J*_{CH} < 2 Hz, ¹³CHOH), 6.9–7.4 (aromatic); ¹³C{¹H} NMR (CD₂Cl₂, 90 MHz) δ 10.41 (C₅*Me*₅), 71.94 (dd, ¹*J*_{CC} = 59.7 Hz, ²*J*_{CC} = 2.3 Hz, ¹³CH¹³C≡¹³CTol), 84.1 (dd, ¹*J*_{CC} = 98.3 Hz, ²*J*_{CC} = 2.5 Hz, ¹³CH¹³C≡ ¹³CTol), 94.4 (dd, ¹*J*_{CC} = 98.8 Hz, ¹*J*_{CC} = 58.2 Hz, ¹³CH¹³C≡¹³CTol).

[C₅Me₅(CO)₂Re(η^3 -Tol¹³CH¹³C≡¹³CTol)][BF₄] (15) and [C₅Me₅-(CO)₂Re(η^2 -Tol¹³C¹³C≡¹³CHTol)][BF₄] (16). Addition of 15 μ L of 85% HBF₄·Et₂O to a dark yellow solution of 14 (17 mg, 0.03 mmol) in CD₂Cl₂ at -78 °C gave a deep green solution of a 1:10 mixture of 15/16. The mixture of isomers was characterized spectroscopically.

For $[C_5Me_5(CO)_2Re(\eta^3 - Tol^{13}CH^{13}C \equiv {}^{13}CTol)][BF_4]$ (15): ¹H NMR (CD₂Cl₂, 500 MHz, -90 °C) δ 2.02 (s, C₅Me₅), 5.71 (d, ¹J_{CH} = 167 Hz, CH); ¹³C{}^{1H} NMR (CD₂Cl₂, 125 MHz, -90 °C) δ 59.79 (dd, ¹J_{CC} = 64.8 Hz, ²J_{CC} = 7.8 Hz, ¹³CH¹³C \equiv {}^{13}C), 66.40 (dd, ¹J_{CC} = 109.8, 64.8 Hz, ¹³CH¹³C = {}^{13}C), 85.42 (dd, ¹J_{CC} = 109.8 Hz, ²J_{CC} = 7.8 Hz, ¹³CH¹³C = {}^{13}C).

For $[C_5Me_5(CO)_2Re(\eta^2-Tol^{13}Cl^{-13}Cl^{-13}CHTol)][BF_4]$ (16): ¹H NMR (CD₂Cl₂ 500 MHz, -90 °C) δ 2.09 (s, C₅Me₅), 2.38 (s, CH₃), 2.53 (s, CH₃), 7.38 (d, ³J = 7.8 Hz, H_{meta}), 7.62 (br s, H_{meta}), 8.05 (br s, H_{ortho}), 9.99 (d, ¹J_{CH} = 159.4 Hz, ¹³CH=CC); ¹³C{¹H} NMR (CD₂Cl₂, 125 MHz, -90 °C) δ 10.30 (C₅Me₅), 104.12 (C₅Me₅), 107.06 (dd, ¹J_{CC} = 85.0, 61.0 Hz, ¹³CH=¹³C¹³C), 141.81 (d, ¹J_{CC} = 85.0, ¹³CH=¹³C¹³C), 233.81 (d, ¹J_{CC} = 61.9, ¹³CH=¹³C¹³C); ¹H NMR (CD₂Cl₂ 360 MHz, -75 °C) δ 2.08 (s, C₅Me₅), 2.36 (s, CH₃), 2.51 (s, CH₃), 7.36 (d, ³J = 8.0 Hz, H_{meta}), 7.63 (br, H_{meta}), 8.05 (br, H_{ortho}), 10.01 (d, ¹J_{CH} = 159.8 Hz, ¹³CH=¹³C¹³C); ¹³C{¹H} NMR (CD₂Cl₂, 90 MHz, -75 °C) δ 10.19 (C₅Me₅), 21.95 (CH₃), 22.89 (CH₃), 103.90 (C₅Me₅), 106.81 (dd, ¹J_{CC} = 84.20, 60.7 Hz, ¹³CH=¹³C¹³C), 141.72 (d, ¹J_{CC} = 84.8 Hz, ¹³CH= ¹³C¹³C), 233.54 (d, ¹J_{CC} = 61.8 Hz, ¹³CH=¹³C¹³C).

{ $C_5Me_5(CO)_2Re[\eta^3(\alpha,1,2)-endo,syn-C_6H_5CH(C \equiv CC_6D_5)]$ }[BF₄] (23-d₅A). Addition of 8 µL of HBF₄·Et₂O to a black solution of $C_5Me_5(CO)_2Re=C(Ph)C=CC_6D_5 (22-d_5A)^{19c} (23 \text{ mg}, 0.04 \text{ mmol})$ in CD_2Cl_2 at -78 °C gave a red solution, which changed to a green solution upon warming to 0 °C. 23-d5A was characterized spectroscopically. ¹H NMR (CD₂Cl₂, 360 MHz, 0 °C) δ 2.22 (s, C₅Me₅), 2.66 (s, CH−C≡C), 4.76 (br d, ${}^{3}J_{HH} = 5.8$ Hz, H₂), 7.33 (m, H₃/H₅), 7.65 (dt, ${}^{3}J_{\rm HH} = 7.6$ Hz, ${}^{4}J_{\rm HH} < 1.5$ Hz, H₄), 7.83 (br d, J = 8.5 Hz, H₆). ${}^{13}C{}^{1}H{}$ NMR (CD₂Cl₂, 90 MHz, −75 °C) δ 10.48 (C₅Me₅), 35.06 (C₇H−C≡C), 76.30 (ortho, C_2), 86.86 ($C \equiv CC_6D_5$), 91.55 ($C \equiv CC_6D_5$), 103.21 (ipso, C_1), 105.53 (C_5 Me₅), 121.94 (*ipso*-C₆D₅), 128.38 (1:1:1 t, ${}^1J_{CD} = 24.8$ Hz, Cortho-D), 129.84 (C3 or C5), 130.68 (C3 or C5), 131.61 (1:1:1 t, ${}^{1}J_{CD} = 24.5$ Hz, C_{meta} -D), 133.76 (C₄), 134.03 (C₆), 134.73 (1:1:1 t, ${}^{1}J_{CD} = 20.30 \text{ Hz}, \text{ C}_{para} - \text{D}$), 193.25 (CO), 193.47 (CO). Low temperature ¹H NMR (CD₂Cl₂, -75 °C) for **5**: δ 2.06 (s, C₅Me₅), 5.81 (s, CH−C≡C), 6.57 (d, *J* = 7.6 Hz, phenyl), 7.18 (t, *J* = 7.1 Hz, phenyl), 7.46 (t, J = 7.6 Hz, phenyl), 8.15 (d, J = 6.4 Hz, phenyl). Low temperature ¹H NMR (CD₂Cl₂, -75 °C) for 6: δ 2.11 (s, C₅Me₅), 7.0-7.9 (aromatic, obscured), 10.11 (s, CH=C).

Acknowledgment. Financial support from the National Science Foundation is gratefully acknowledged. Grants from NSF (CHE-9629688) for the purchase of the NMR spectrometers and a diffractometer (CHE-9709005) are acknowledged.

Supporting Information Available: General experimental procedures, spectral characterizations, dynamic NMR, and X-ray crystallographic information for $23-d_5B$ (24 pages, PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA020439M